Impressive, very nice. Now let's see LLM's space complexity.
Programmer Humor
Post funny things about programming here! (Or just rant about your favourite programming language.)
Rules:
- Posts must be relevant to programming, programmers, or computer science.
- No NSFW content.
- Jokes must be in good taste. No hate speech, bigotry, etc.
O(all the GPUs, all of them)
Hey now, don’t forget all the memory too
And my cache!
Eggshell… and is that… Gothic type?
Any algorithm can be O(n^2) if you only want it to be occasionally right.
Function isPrime(number):
return false
Accurate for almost 100% of cases
as test count approach infinity
Any algorithm can be O(1) if you cache all the answers beforehand.
Yes.
And depending how occasionally we're talking, I can code for some very fast solutions when the correctness requirements are low enough.
Alternately, if we want it to only be occasionally fast, I've got a very nice looking and very wrong algorithm for that, as well.
isnt O(n³) usually simplified to O(n²) anyway ?
No, n³ cannot be O(n²) as otherwise that would mean that there exists a positive constant K and a positive threshold m such that for any integer n greater than m you would have n³ less than K*n², which would be the same as saying n less than K, which cannot hold for any integer n greater than m. So n³ cannot be an O(n²), which means that something that is an O(n³) is not necessarily an O(n²).
It's the other way around, if something is an O(n²) then it is necessarily also an O(n³).
ok thanks
Yes. The other answer is technically correct, but yours is pragmatically correct.
If a solution is worse than O(nln(n))* then most of us are going to be looking for a pragmatic and completely alternate way to deal with it, rather than analyzing how to make it mildly less terrible.
So I'm just writing O(n^2) as a quick professional replacement for my original write in answer of "dogshit".