Finally, we've solved math.
196
Be sure to follow the rule before you head out.
Rule: You must post before you leave.
Gura sure did.
"1, 2, 6? What happend to 3,4 and 5?"
For the uninitiated: https://youtu.be/da_LnL-As48?si=Qb5pY2OBHhVBr0e6
Here is an alternative Piped link(s):
https://youtu.be/da_LnL-As48?si=Qb5pY2OBHhVBr0e6
Piped is a privacy-respecting open-source alternative frontend to YouTube.
I'm open-source; check me out at GitHub.
How to spot a creative mind
What is ∞ + ∞?
Let x_n be an infinite, real sequence with lim(n -> ∞) x_n = ∞.
Let y_n be another infinite, real sequence with lim(n -> ∞) y_n = ∞.
Let c_n be an infinite sequence, with c_n = 0 for all n ∈ ℕ.
Since y_n diverges towards infinity, there must exist an n_0 ∈ ℕ such that for all n ≥ n_0 : y_n ≥ c_n. (If it didn't exist, y_n wouldn't diverge to infinity since we could find an infinite subsequence of y_n which contains only values less than zero.)
Therefore:
lim(n -> ∞) x_n + y_n ≥ lim (n -> ∞) x_n + c_n = lim(n -> ∞) x_n + 0 = ∞
□
So the answer is □?
In case you aren't joking, '□' is used to indicate the end of a mathematical proof. It's equivalent to q.e.d
I was not joking, which also probably explains why I have no idea what anything else in your post says.
No worries, I made the comment mostly for people with somewhat advanced knowledge in math. A year ago I wouldn't have understood any of it either.
You beat me to it
i think this means that ∞ + ∞ > ∞
Not quite. It's somewhat annoying to work with infinities, since they're not numbers. Technically speaking, ∞ + ∞ is asking the question: What is the result of adding any two infinite (real) sequences, both of which approaching infinity? My "proof" has shown: the result is greater than any one of the sequences by themselves -> therefore adding both sequences produces a new sequence, which also diverges to infinity. For example:
The series a_n = n diverges to infinity. a_1 = 1, a_2 = 2, a_1000 = 1000.
Therefore, lim(n -> a_n) = ∞
But a_n = 0.5n + 0.5n.
And lim(n -> ∞) 0.5n = ∞
So is lim(n -> ∞) a_n = 2 • lim(n -> ∞) 0.5n = 2 • ∞?
It doesn't make sense to treat this differently than ∞, does it?
Here is an alternative Piped link(s):
Sounds like the infinite hotel paradox
Piped is a privacy-respecting open-source alternative frontend to YouTube.
I'm open-source; check me out at GitHub.
16 minutes to live.