this post was submitted on 05 Jan 2025
793 points (97.4% liked)

Privacy

32653 readers
267 users here now

A place to discuss privacy and freedom in the digital world.

Privacy has become a very important issue in modern society, with companies and governments constantly abusing their power, more and more people are waking up to the importance of digital privacy.

In this community everyone is welcome to post links and discuss topics related to privacy.

Some Rules

Related communities

much thanks to @gary_host_laptop for the logo design :)

founded 5 years ago
MODERATORS
 

I have never liked Apple and lately even less. F.... US monopolies

you are viewing a single comment's thread
view the rest of the comments
[–] utopiah@lemmy.ml 4 points 4 days ago (2 children)

I don’t know how much compute cost this adds to an already expensive computation.

At that scale and because they do pay for servers I bet they did the math and are constantly optimizing the process as they own the entire stack. They might have somebody who worked on the M4 architecture give them hint on how to do so. Just speculating here but arguably they are in a good position to make this quite efficient, even though in fine if it's actually worth the ecological costs is arguable.

[–] queermunist@lemmy.ml 10 points 4 days ago (2 children)

I bet they did the math

Did they? Because it seems like everyone else is in a hype bubble and doesn't give a shit about how much this costs or how much money it makes.

[–] utopiah@lemmy.ml 2 points 3 days ago* (last edited 3 days ago)

Looks like they did "Brakerski-Fan-Vercauteren (BFV) HE scheme, which supports homomorphic operations that are well suited for computation (such as dot products or cosine similarity) on embedding vectors that are common to ML workflows" namely they use a scheme that is both secure and efficient specifically for the kind of compute they do here. https://machinelearning.apple.com/research/homomorphic-encryption

[–] someacnt@sh.itjust.works 1 points 3 days ago (1 children)

At least it's not going to be the overhyped LLM doing the analysis, it seems, considering the input is a photo data.

[–] utopiah@lemmy.ml 2 points 3 days ago (1 children)

not going to be the overhyped LLM doing the analysis

Here indeed I don't think so but other vision models, e.g. https://github.com/vikhyat/moondream are relying on LLM to generate the resulting description.

[–] someacnt@sh.itjust.works -1 points 3 days ago (1 children)

My gosh, what is with people's reliance on single thing

[–] utopiah@lemmy.ml 0 points 3 days ago

Well to be fair, and even though I did spend a bit of time to write about the broader AI hype BS cycle https://fabien.benetou.fr/Analysis/AgainstPoorArtificialIntelligencePractices LLMs are in itself not "bad". It's an interesting idea to rely on our ability to produce and use languages to describe a lot of useful things around us. So using statistics on it to try to match is actually pretty smart. Now... there are so many things that went badly for the last few years I won't even start (cf link) but the concept per se, makes sense to rely on it sometimes.

[–] Boomkop3@reddthat.com 3 points 4 days ago* (last edited 4 days ago) (1 children)

Their chips are pretty good at not drawing much power. But then you also get to the balance of power cost, computing power and physical space.

Google and Microsoft are already building their own power generation systems for even faster AI slop. That would make power a lot cheaper, and super efficient chips might not be the best answer.

I don't know which way Apple will go, except further up their own behind. But either way, these are some really cool approaches to implementing this technology, and I hope they keep it up!

[–] utopiah@lemmy.ml 0 points 3 days ago

Yep, reading their blog post to read a bit better. I don't like that it's enabled by default, especially despite iCloud off (which should be a signal to say the user does NOT want data leaving their device) but considering what others are doing, this seems like the best trade off.