this post was submitted on 22 Nov 2024
33 points (97.1% liked)

Ask Science

8671 readers
67 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 1 year ago
MODERATORS
 

In the same vein, what about a stellar-sized black hole like Cygnus X-1? At this size the rate of evaporation is quicker, right?

you are viewing a single comment's thread
view the rest of the comments
[–] cynar@lemmy.world 21 points 16 hours ago* (last edited 16 hours ago) (2 children)

I've not got figures to hand, but it's incredibly slow. They are effectively perfect black body radiators, with their apparent temperature linked to their mass. The bigger they are, the colder they are.

Some back of the envelope calculations.

Right now, they are considerably colder than the cosmic background radiation, and so losses to hawking radiation are overwhelmed by even this. I just did a quick calculation on the milk way supermassive black hole, and it's about 1.5x10^-16 °C. That would work out as around 3x10^-91W/m^2 or around 1x10^-71W. It's about 1x10^13 Joules per gram of matter. So you're looking at 10^84 seconds. The universe is about 4.4x10^16 seconds old, so around 10^68 times the current age of the universe.

To emit 1g will take around 100000000000000000000000000000000000000000000000000000000000000000000 x the age of the current universe. This ignores infalling energy.

[–] CrayonRosary@lemmy.world 6 points 6 hours ago* (last edited 6 hours ago)

On Lemmy, superscripts need to be surrounded by carets.

For example, this:

3x10^-91W/m^2

Needs to be this:

3x10^-91^W/m^2^

3x10^-91W/m^2

Vs.

3x10^-91^W/m^2^

(If any app displays these incorrect superscripts correctly, then that app is doing it wrong. Last I knew Sync for Lemmy was wrong, but I stopped using it months ago for reasons such as this.)

Screenshot from the website showing how it currently looks:

[–] niktemadur@lemmy.world 6 points 15 hours ago (2 children)

It seems like a ridiculously huge amount of time for such a small amount, more so considering that according to theory these black holes will eventually evaporate completely.

But then I try and visualize just how much it actually takes to go from 10^99 to hit the 10^100 (googol) milestone, and it's just too big a numerical chasm to truly wrap one's mind around. It all reaches the level of bizarre abstractions way, way, waaaay before that point.

[–] Knuk@lemmy.world 5 points 12 hours ago (3 children)

Something I like to think about is when we die, assuming there's no afterlife, then you don't feel the passage of time. A second or trillion of years is the same. If there's ever a point in that future where you'd gain consciousness again somehow, then you'd feel as if you'd be there the second after you died. It doesn't really relate to black holes but I felt like sharing the thought anyway.

[–] cynar@lemmy.world 2 points 6 hours ago

The boltzmann brain hypothesis. Given enough time, a spontaneous brain, identical to yours, will form. It will experience for a short period before dying (nothing says it needs to be on a planet, or even in a body).

The weirdness of true infinities.

[–] TeamAssimilation@infosec.pub 2 points 10 hours ago

Wouldn't that be considered afterlife too?

[–] Corkyskog@sh.itjust.works 1 points 11 hours ago

Well if time is infinite, isn't it only a matter of time until your brain is somehow reassembled

[–] Hamartiogonic@sopuli.xyz 3 points 13 hours ago (1 children)

That evaporation rate is so small that you can think of black holes as eternal. However, it’s still not zero, so in extremely long time scales, it begins to make a deference. That’s when the heat death of the universe comes in, but those time scales are just ridiculous.

[–] cynar@lemmy.world 2 points 6 hours ago

What's screwy is that black holes are only an issue for physics if they are eternal. As matter falls towards the event horizon, time, as measured from outside, goes ever slower. It takes an infinitely lon time to cross the event horizon. Hawking radiation means that it will never actually cross, since the black hole will retreat in a finite time. If you flew towards one, you would apparently skim it, without entering. You would emerge to find the universe long dead and gone however .

It turns black holes from problematic infinity points to really weird knots in spacetime.