Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
Weight is determined by gravity, which is determined by the mass of the objects.
Regardless of gravity, objects still retain their mass, so you wouldn't be able to move anything that massive.
Moving an object requires force, the amount of force required is related to the object's mass and current velocity (momentum). Even sitting still you'd have to accelerate the mass from zero.
I forget the acceleration formulas, physics was a few decades ago. F=M*A?
Yes, that's right. So the force required to accelerate an extremely massive object is very high.
But, if you only want to accelerate it a little tiny bit, you only need a little tiny bit of force. So all other things being equal, you could push on the sun and maybe after some days, weeks, months, or years, you'd start to notice that it moved a little bit.