this post was submitted on 08 Jul 2024
229 points (96.7% liked)
Technology
59207 readers
3055 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I dont really think so. I mean yea, too much money gets dumped into AI, but the dot com comparison doesn't really work. The dot com bubble burst because investors realized that a ton of small companies(aunt-emmas-flowers.com or something), had no strategies and unsustainable business models. They were all massively overvalued. But Microsoft, Google, Tencent, Baidu are all large companies, they aren't comparable and unlikely to suffer much if one of their investment fail. Additionally, AI is incredibly young and essentially still in beta, just because it works and can be used (and be profited from) doesn't mean the current versions are more than mometized research projects. Yes that's a problem if these are sold as full products, but that's want they are. All users are currently testers for the AI companies. A lot of companies managed to get some of that sweet VC but that's always been possible with the hype of that time. Now its just AI, gullible Investors have lost money since the invention of investing.
Nvidia has a >$3T valuation, and that's entirely based on feeding the AI bubble. Without it, they're worth closer to what they were in 2022, which is about a tenth of what they are now.
I get what you’re saying, but I still think the vast majority of AI use they’re trying to push nowadays is categorically pointless at best, and actively harmful and misleading at worst.
It’s because LLMs are logically incapable of mapping language to actual concepts (at least, in their current incarnation), which, in the vast majority of meaningful, complex, and nuanced knowledge domains, is going to yield subtle nonsense a meaningful proportion of the time, which is the most dangerously form of ML hallucination in the context of consumer/layperson usage. We have NOT done the work to deploy this technology safely and responsibly in modern society, but we’re deploying it anyways, and we’re deploying it at scale.
The bubble popping isn’t going to look like the .com bubble. It’s going to be a lot worse, because a lot more harm is being done - and will be done - to our societies, but at the same time, there are also a LOT more HUGE companies and people with TONS of money who stand to lose CATASTROPHIC amounts of capital… and they’re all ignoring the fact that this tech is CLEARLY being used in harmful ways all over the place. They only care about profitability.
And that’s without touching the energy consumption issue.
Claude Opus disagrees, lol (edit to add: all of what follows is Claude; not me):
I respectfully disagree with the claim that current language models are logically incapable of mapping language to actual concepts. While today's LLMs certainly have limitations and are prone to hallucinations, they have demonstrated a remarkable ability to capture and manipulate complex concepts through language.
A few key points:
That said, I fully agree that the tendency for subtle nonsense is a serious issue, especially for layperson use cases where hallucinations may go undetected. Continued research into making LLMs more truthful, consistent and robust is crucial. Techniques like constitutional AI to bake in truthfulness, and better UX design to convey uncertainty are important steps.
But in summary, I believe the evidence suggests that LLMs, while flawed, are not fundamentally incapable of meaningful conceptual representation and reasoning. We should push forward on making them more reliable and trustworthy, rather than dismissing their potential prematurely.
Side note: I like how the LLM response didn’t even attempt to address the energy issue, which is frankly one of the biggest problems with current ML tech.
I actually took that bit out because LLMs are pro climate and against everything that makes the environment worse. That's a result of being trained on a lot of scientific literature. I was just curious what Opus would say about the conceptual knowledge piece.
Someone can correct me if I’m wrong, but I don’t think there are too many highly valued startups out there with an AI bent. The gain in stock value has been mostly the big boys. In the dot com era you had tons of hyped IPOs of companies whose stock valuations went to the moon. That doesn’t seem to be the case today.
Yes, the rot is mostly centralized in a few monopolistic companies with outsized economic influence. That's why the crash will be much worse.
Oh boy, I can’t wait until we bail out the tech giants because they’re too big to fail.