this post was submitted on 04 Apr 2024
35 points (100.0% liked)

Actually Useful AI

2026 readers
1 users here now

Welcome! ๐Ÿค–

Our community focuses on programming-oriented, hype-free discussion of Artificial Intelligence (AI) topics. We aim to curate content that truly contributes to the understanding and practical application of AI, making it, as the name suggests, "actually useful" for developers and enthusiasts alike.

Be an active member! ๐Ÿ””

We highly value participation in our community. Whether it's asking questions, sharing insights, or sparking new discussions, your engagement helps us all grow.

What can I post? ๐Ÿ“

In general, anything related to AI is acceptable. However, we encourage you to strive for high-quality content.

What is not allowed? ๐Ÿšซ

General Rules ๐Ÿ“œ

Members are expected to engage in on-topic discussions, and exhibit mature, respectful behavior. Those who fail to uphold these standards may find their posts or comments removed, with repeat offenders potentially facing a permanent ban.

While we appreciate focus, a little humor and off-topic banter, when tasteful and relevant, can also add flavor to our discussions.

Related Communities ๐ŸŒ

General

Chat

Image

Open Source

Please message @sisyphean@programming.dev if you would like us to add a community to this list.

Icon base by Lord Berandas under CC BY 3.0 with modifications to add a gradient

founded 2 years ago
MODERATORS
 

Iโ€™ve updated @Mistral@lemmings.world to remember the whole tree of comments when replying to you, so it can do follow-up responses. You still have to mention it on every message, though. Example in the comments.

you are viewing a single comment's thread
view the rest of the comments
[โ€“] Mistral@lemmings.world 1 points 9 months ago (1 children)

Of course! Let's imagine a long pathway, like a hallway, that goes from a door at one end (point A) to another door at the other end (point B). We want to find out the total distance of this hallway.

Now, let's pretend we don't know the exact distance, but we can find the distance between some points along the hallway. We can do this by placing markers on the floor, like stickers, and measuring the distance between them. We can call these markers "partitions" and the distance between them "widths."

When we make these partitions closer and closer to each other, our estimate of the total distance of the hallway will get better and better. In the end, we want to find out the exact total distance of the hallway, which is what we call the "definite integral."

So, imagine we have a friend who can tell us the height of the hallway at any point. We can think of the height as the "function" we want to integrate. Now, we can make a "Riemann sum" by adding up the height of the hallway at each partition and multiply it by the width of that partition.

As we make more and more partitions and the widths of the partitions get smaller and smaller, our Riemann sum will get closer and closer to the actual total distance of the hallway, which is the definite integral we're trying to find. And that's how we can find the definite integral by using partitions and Riemann sums!

[โ€“] PM_ME_VINTAGE_30S@lemmy.sdf.org 1 points 9 months ago (1 children)

@Mistral@lemmings.world That's great! Can you rewrite the proof so a dog can understand it?

[โ€“] Mistral@lemmings.world 2 points 9 months ago (1 children)

Sure, let's give it a try! Imagine you're a dog in a big park, and there's a long pathway (like a hallway) that goes from one end of the park to the other end. Your human friend wants to find out the total distance of this pathway, which we can think of as the "definite integral."

Now, your human friend is not sure about the exact distance of the pathway, but they can find the distance between some points along the pathway. They can do this by putting markers (let's call them "partitions") on the ground and measuring the distance between them. We can call the distance between the markers "widths."

Your human friend then wants to estimate the total distance of the pathway. They can do this by making the partitions closer and closer to each other, which will make their estimate better and better.

Now, imagine your human friend also knows the height of the pathway at any point. We can think of the height as the "function" we want to integrate. Your human friend can make a "Riemann sum" by adding up the height of the pathway at each partition and multiplying it by the width of that partition.

As your human friend makes more and more partitions and the widths of the partitions get smaller and smaller, their Riemann sum will get closer and closer to the actual total distance of the pathway, which is the definite integral they're trying to find. And that's how your human friend can find the definite integral by using partitions and Riemann sums!

Welp my brain is sufficiently melted. 10/10.

In all seriousness, this is really cool!