this post was submitted on 04 Dec 2023
462 points (97.7% liked)
Technology
59207 readers
3134 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
These qubits oscillate at microwave frequencies where the quantum information is stored. This means they need to be kept at a temperature where the microwave frequencies are completely devoid of any thermal noise. For microwave frequencies, this temperature is just a few millikelvins above absolute zero. Unfortunately, the temperature is required due to the fundamental nature of thermal noise due to temperature. Making the qubits out of room temperature superconductor would not solve the problem of the need to cool them down - unless they can be operated at higher frequency. There are quantum computers made using light/optical photons which do operate at room temperature because optical photons are at much higher frequency which has no thermal noise even at room temperature.
So, in conclusion, everytime you hear about superconducting qubit, they are always in a giant dilution refrigerator which gets bigger for more qubits as more connections from room temperature to qubits are needed.