this post was submitted on 28 Sep 2023
40 points (100.0% liked)

Technology

59207 readers
3234 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] abhi9u@lemmy.world 3 points 1 year ago

Do you mean the number of tokens in the LLM's tokenizer, or the dictionary size of the compression algorithm?

The vocab size of the pretrained models is not mentioned anywhere in the paper. Although, they did conduct an experiment where they measured compression performance while using tokenizers of different vocabulary sizes.

If you meant the dictionary size of the compression algorithm, then there was no dictionary because they only used arithmetic coding to do the compression which doesn't use dictionaries.