131
submitted 1 year ago by will_a113@lemmy.ml to c/science@lemmy.ml

Scientists have figured out how to harness Brownian motion -- literally the thermal energy of individual molecules -- to make electricity, by cleverly connecting diodes up to pieces of graphene, which are atom-thick sheets of Carbon. The team has successfully demonstrated their theory (which was previously thought to be impossible by prominent physicists like Richard Feynman), and are now trying to make a kind of micro-harvester that can basically produce inexhaustible power for things like smart sensors.

The most impressive thing about the system is that it doesn't require a thermal gradient to do work, like other kinds of heat-harvesting systems (Stirling engines, Peltier junctions, etc.). As long as it's a bit above absolute zero, there's enough thermal energy "in the system" to make the graphene vibrate continuously, which induces a current that the diodes can then pump out.

Original journal link: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.108.024130

you are viewing a single comment's thread
view the rest of the comments
[-] SmoothIsFast@citizensgaming.com 2 points 1 year ago

I guess in addition isn't the thermal gradient they are claiming is nonexistent just extremely small throughout the graphene molecules? They aren't gonna be a perfectly uniform temperature and thermals don't transfer instantly meaning a gradient would be present. I guess couldn't you prove they aren't reducing entropy by comparing how quickly the sheet of graphene cools when this system is active vs a regular sheet of graphene in the same conditions. I'd guess we would see their system losing heat more quickly than the plain old sheet of graphene thus showing this isn't a maxwell demon?

this post was submitted on 22 Aug 2023
131 points (97.8% liked)

Science

13018 readers
12 users here now

Subscribe to see new publications and popular science coverage of current research on your homepage


founded 5 years ago
MODERATORS