this post was submitted on 18 Sep 2024
156 points (94.8% liked)

Technology

59207 readers
2934 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[โ€“] tal@lemmy.today 22 points 1 month ago* (last edited 1 month ago) (23 children)

looks dubious

The problem here is that if this is unreliable -- and I'm skeptical that Google can produce a system that will work across-the-board -- then you have a synthesized image that now has Google attesting to be non-synthetic.

Maybe they can make it clear that this is a best-effort system, and that they only will flag some of them.

There are a limited number of ways that I'm aware of to detect whether an image is edited.

  • If the image has been previously compressed via lossy compression, there are ways to modify the image to make the difference in artifacts in different points of the image more visible, or -- I'm sure -- statistically look for such artifacts.

  • If an image has been previously indexed by something like Google Images and Google has an index sufficient to permit Google to do fuzzy search for portions of the image, then they can identify an edited image because they can find the original.

  • It's possible to try to identify light sources based on shading and specular in an image, and try to find points of the image that don't match. There are complexities to this; for example, a surface might simply be shaded in such a way that it looks like light is shining on it, like if you have a realistic poster on a wall. For generation rather than photomanipulation, better generative AI systems will also probably tend to make this go away as they improve; it's a flaw in the image.

But none of these is a surefire mechanism.

For AI-generated images, my guess is that there are some other routes.

  • Some images are going to have metadata attached. That's trivial to strip, so not very good if someone is actually trying to fool people.

  • Maybe some generative AIs will try doing digital watermarks. I'm not very bullish on this approach. It's a little harder to remove, but invariably, any kind of lossy compression is at odds with watermarks that aren't very visible. As lossy compression gets better, it either automatically tends to strip watermarks -- because lossy compression tries to remove data that doesn't noticeably alter an image, and watermarks rely on hiding data there -- or watermarks have to visibly alter the image. And that's before people actively developing tools to strip them. And you're never gonna get all the generative AIs out there adding digital watermarks.

  • I don't know what the right terminology is, but my guess is that latent diffusion models try to approach a minimum error for some model during the iteration process. If you have a copy of the model used to generate the image, you can probably measure the error from what the model would predict -- basically, how much one iteration would change an image or part of it. I'd guess that that only works well if you have a copy of the model in question or a model similar to it.

I don't think that any of those are likely surefire mechanisms either.

[โ€“] xenoclast@lemmy.world 1 points 1 month ago* (last edited 1 month ago)

Fun fact about AI products (or any gold rush economy) it doesn't have to work. It just has to sell.

I mean this is generally true about anything but it's particularly bad in these situations. Also PT Barnum had a few thoughts on this as well.

load more comments (22 replies)